Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38529504

RESUMO

Purpose: Neurogenic orthostatic hypotension (nOH) results from deficient reflexive delivery of norepinephrine to cardiovascular receptors in response to decreased cardiac venous return. Lewy body (LB) forms of nOH entail low 18F-dopamine-derived radioactivity (a measure of cardiac noradrenergic deficiency), olfactory dysfunction by the University of Pennsylvania Smell Identification Test (UPSIT), and increased deposition of alpha-synuclein (ɑ-syn) in dermal sympathetic noradrenergic nerves by the ɑ-syn-tyrosine hydroxylase (TH) colocalization index. This observational, cross-sectional study explored whether combinations of these biomarkers specifically identify LB forms of nOH. Methods: Clinical laboratory data were reviewed from patients referred for evaluation at the National Institutes of Health for chronic autonomic failure between 2011 and 2023. The cutoff value for low myocardial 18F-dopamine-derived radioactivity was 6,000 nCi-kg/cc-mCi, for olfactory dysfunction an UPSIT score ≤ 28, and for an increased ɑ-syn-TH colocalization index ≥ 1.57. Results: A total of 44 patients (31 LB, 13 non-LB nOH) had data for all 3 biomarkers. Compared to the non-LB group, the LB nOH group had low myocardial 18F-dopamine-derived radioactivity, low UPSIT scores, and high ɑ-syn-TH colocalization indexes (p<0.0001 each). Combining the 3 biomarkers completely separated the groups. Cluster analysis identified 2 distinct groups (p<0.0001) independently of the clinical diagnosis, 1 cluster corresponding exactly to LB nOH. Conclusion: LB forms of nOH feature cardiac noradrenergic deficiency, olfactory dysfunction, and increased ɑ-syn-TH colocalization in skin biopsies. Combining the data for these variables efficiently separates LB from non-LB nOH. Independently of the clinical diagnosis, this biomarker triad identifies a pathophysiologically distinct cluster of nOH patients.

2.
Clin Auton Res ; 34(1): 125-135, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38446362

RESUMO

PURPOSE: Orthostasis increases the variability of continuously recorded blood pressure (BP). Low-frequency (LF) BP oscillations (Mayer waves) in this setting are related to the vascular-sympathetic baroreflex. Mechanisms of increased high-frequency (HF) BP oscillations at the periodicity of respiration during orthostasis have received less research attention. A previously reported patient with post-neurosurgical orthostatic hypotension (OH) and vascular-sympathetic baroreflex failure had large tilt-evoked, breathing-driven BP oscillations, suggesting that such oscillations can occur independently of vascular-sympathetic baroreflex modulation. In the present study we assessed effects of orthostasis on BP variability in the frequency domain in patient cohorts with or without OH. METHODS: Power spectral analysis of systolic BP variability was conducted on recordings from 73 research participants, 42 with neurogenic OH [13 pure autonomic failure, 14 Parkinson's disease (PD) with OH, 12 parkinsonian multiple system atrophy, and 3 status post-brainstem neurosurgery] and 31 without OH (control group of 16 healthy volunteers and 15 patients with PD lacking OH), before, during, and after 5' of head-up tilt at 90 degrees from horizontal. The data were log transformed for statistical testing. RESULTS: Across all subjects, head-up tilting increased HF power of systolic BP variability (p = 0.001), without a difference between the neurogenic OH and control groups. LF power during orthostasis was higher in the control than in the OH groups (p = 0.009). CONCLUSIONS: The results of this observational cohort study confirm those based on our case report and lead us to propose that even in the setting of vascular-sympathetic baroreflex failure orthostasis increases HF power of BP variability.


Assuntos
Doenças do Sistema Nervoso Autônomo , Hipotensão Ortostática , Humanos , Pressão Sanguínea/fisiologia , Barorreflexo/fisiologia , Tontura , Frequência Cardíaca/fisiologia , Respiração
3.
J Clin Invest ; 134(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37883190

RESUMO

BACKGROUND: In Lewy body diseases (LBDs) Parkinson disease (PD), and dementia with Lewy bodies (DLB), by the time parkinsonism or cognitive dysfunction manifests clinically, substantial neurodegeneration has already occurred. Biomarkers are needed to identify central LBDs in a preclinical phase, when neurorescue strategies might forestall symptomatic disease. This phase may involve catecholamine deficiency in the autonomic nervous system. We analyzed data from the prospective, observational, long-term PDRisk study to assess the predictive value of low versus normal cardiac 18F-dopamine positron emission tomography (PET), an index of myocardial content of the sympathetic neurotransmitter norepinephrine, in at-risk individuals. METHODS: Participants self-reported risk factor information (genetics, olfactory dysfunction, dream enactment behavior, and orthostatic intolerance or hypotension) at a protocol-specific website. Thirty-four with 3 or more confirmed risk factors underwent serial cardiac 18F-dopamine PET at 1.5-year intervals for up to 7.5 years or until PD was diagnosed. RESULTS: Nine participants had low initial myocardial 18F-dopamine-derived radioactivity (<6,000 nCi-kg/cc-mCi) and 25 had normal radioactivity. At 7 years of follow-up, 8 of 9 with low initial radioactivity and 1 of 11 with normal radioactivity were diagnosed with a central LBD (LBD+) (P = 0.0009 by Fisher's exact test). Conversely, all 9 LBD+ participants had low 18F-dopamine-derived radioactivity before or at the time of diagnosis of a central LBD, whereas among 25 participants without a central LBD only 1 (4%) had persistently low radioactivity (P < 0.0001 by Fisher's exact test). CONCLUSION: Cardiac 18F-dopamine PET highly efficiently distinguishes at-risk individuals who are diagnosed subsequently with a central LBD from those who are not. CLINICALTRIALS: gov NCT00775853. FUNDING: Division of Intramural Research, NIH, NINDS.


Assuntos
Dopamina , Doença de Parkinson , Humanos , Estudos Prospectivos , Corpos de Lewy , Tomografia por Emissão de Pósitrons/métodos , Doença de Parkinson/diagnóstico por imagem , Norepinefrina
4.
Clin Auton Res ; 33(2): 205-208, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36881269

RESUMO

We describe a patient with neurogenic orthostatic hypotension (nOH) after brainstem neurosurgery in whom baroreflex-cardiovagal function was normal despite baroreflex-sympathoneural failure. We also cite other conditions entailing differential alterations in the two efferent limbs of the baroreflex. Any condition involving nOH from selective loss of sympathetic noradrenergic innervation, interference with sympathetic pre-ganglionic transmission in the thoracolumbar spinal cord, sympathectomies, or attenuated intra-neuronal synthesis, storage, or release of norepinephrine would be expected to manifest with selective baroreflex-sympathoneural dysfunction. We advise caution in relying on indices of baroreflex-cardiovagal function for diagnosing nOH, since normal values for these indices do not exclude nOH.


Assuntos
Hipotensão Ortostática , Humanos , Barorreflexo/fisiologia , Norepinefrina , Pressão Sanguínea/fisiologia
5.
J Am Heart Assoc ; 11(11): e024411, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35621196

RESUMO

Background Lewy body diseases (LBDs) feature deficiency of the sympathetic neurotransmitter norepinephrine in the left ventricular myocardium and sympathetic intra-neuronal deposition of the protein alpha-synuclein (αS). LBDs therefore are autonomic synucleinopathies. Computational modeling has revealed multiple functional abnormalities in residual myocardial sympathetic noradrenergic nerves in LBDs, including decreased norepinephrine synthesis, vesicular storage, and recycling. We report an extended model that enables predictions about the progression of LBDs and effects of genetic predispositions and treatments on that progression. Methods and Results The model combines cardiac sympathetic activation with autotoxicity mediated by the dopamine metabolite 3,4-dihydroxyphenylacetaldehyde. We tested the model by its ability to predict longitudinal empirical data based on cardiac sympathetic neuroimaging, effects of genetic variations related to particular intra-neuronal reactions, treatment by monoamine oxidase inhibition to decrease 3,4-dihydroxyphenylacetaldehyde production, and post-mortem myocardial tissue contents of catecholamines and αS. The new model generated a triphasic decline in myocardial norepinephrine content. This pattern was confirmed by empirical data from serial cardiac 18F-dopamine positron emission tomographic scanning in patients with LBDs. The model also correctly predicted empirical data about effects of genetic variants and monoamine oxidase inhibition and about myocardial levels of catecholamines and αS. Conclusions The present computational model predicts a triphasic decline in myocardial norepinephrine content as LBDs progress. According to the model, disease-modifying interventions begun at the transition from the first to the second phase delay the onset of symptomatic disease. Computational modeling coupled with biomarkers of preclinical autonomic synucleinopathy may enable early detection and more effective treatment of LBDs.


Assuntos
Doença por Corpos de Lewy , Doença de Parkinson , Catecolaminas/metabolismo , Dopamina/metabolismo , Humanos , Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/metabolismo , Monoaminoxidase/metabolismo , Norepinefrina/metabolismo , Sistema Nervoso Simpático , Tomografia Computadorizada por Raios X
6.
Transl Neurodegener ; 11(1): 15, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260194

RESUMO

BACKGROUND: Parkinson's disease (PD) is characterized by intra-neuronal deposition of the protein α-synuclein (α-syn) and by deficiencies of the catecholamines dopamine and norepinephrine (NE) in the brain and heart. Accumulation of α-syn in sympathetic noradrenergic nerves may provide a useful PD biomarker; however, whether α-syn buildup is pathophysiological has been unclear. If it were, one would expect associations of intra-neuronal α-syn deposition with catecholaminergic denervation and with decreased NE contents in the same samples. METHODS: We assayed immunoreactive α-syn and tyrosine hydroxylase (TH, a marker of catecholaminergic innervation) concurrently with catecholamines in coded post-mortem scalp skin, submandibular gland (SMG), and apical left ventricular myocardial tissue samples from 14 patients with autopsy-proven PD and 12 age-matched control subjects who did not have a neurodegenerative disease. RESULTS: The PD group had increased α-syn in sympathetic noradrenergically innervated arrector pili muscles (5.7 times control, P < 0.0001), SMG (35 times control, P = 0.0011), and myocardium (11 times control, P = 0.0011). Myocardial TH in the PD group was decreased by 65% compared to the control group (P = 0.0008), whereas the groups did not differ in TH in either arrector pili muscles or SMG. Similarly, myocardial NE was decreased by 92% in the PD group (P < 0.0001), but the groups did not differ in NE in either scalp skin or SMG. CONCLUSIONS: PD entails increased α-syn in skin, SMG, and myocardial tissues. In skin and SMG, augmented α-syn deposition in sympathetic nerves does not seem to be pathogenic. The pathophysiological significance of intra-neuronal α-syn deposition appears to be organ-selective and prominent in the heart.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , alfa-Sinucleína/metabolismo , Autopsia , Biomarcadores , Catecolaminas , Humanos , Norepinefrina , Doença de Parkinson/metabolismo
7.
Dis Model Mech ; 15(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34842277

RESUMO

Recent reports indicate that Parkinson's disease (PD) involves specific functional abnormalities in residual neurons - decreased vesicular sequestration of cytoplasmic catecholamines via the vesicular monoamine transporter (VMAT) and decreased aldehyde dehydrogenase (ALDH) activity. This double hit builds up the autotoxic metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL), the focus of the catecholaldehyde hypothesis for the pathogenesis of PD. An animal model is needed that reproduces this abnormal catecholamine neurochemical pattern. Adult rats received subcutaneous vehicle or the mitochondrial complex 1 inhibitor rotenone (2 mg/kg/day via a minipump) for 10 days. Locomotor activity was recorded, and striatal tissue sampled for catechol contents and catechol ratios that indicate the above abnormalities. Compared to vehicle, rotenone reduced locomotor activity (P=0.002), decreased tissue dopamine concentrations (P=0.00001), reduced indices of vesicular sequestration (3,4-dihydroxyphenylacetic acid (DOPAC)/dopamine) and ALDH activity (DOPAC/DOPAL) (P=0.0025, P=0.036), and increased DOPAL levels (P=0.04). The rat rotenone model involves functional abnormalities in catecholaminergic neurons that replicate the pattern found in PD putamen. These include a vesicular storage defect, decreased ALDH activity and DOPAL build-up. The rat rotenone model provides a suitable in vivo platform for studying the catecholaldehyde hypothesis.


Assuntos
Doença de Parkinson , Rotenona , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Catecolaminas , Dopamina/metabolismo , Doença de Parkinson/patologia , Ratos , Rotenona/farmacologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-34731744

RESUMO

BACKGROUND: Coffee is one of the most frequently consumed beverages worldwide. Research on effects of coffee drinking has focused on caffeine; however, coffee contains myriad biochemicals that are chemically unrelated to caffeine, including 3,4-dihydroxyphenyl compounds (catechols) such as caffeic acid and dihydrocaffeic acid (DHCA). OBJECTIVE: This prospective within-subjects study examined effects of drinking caffeinated or decaffeinated coffee on plasma free (unconjugated) catechols measured by liquid chromatography with series electrochemical detection (LCED) after batch alumina extraction. To confirm coffee-related chromatographic peaks represented catechols, plasma was incubated with catechol-O-methyltransferase and S-adenosylmethionine before the alumina extraction; reductions in peak heights would identify catechols. METHODS: Ten healthy volunteers drank 2 cups each of caffeinated and decaffeinated coffee on separate days after fasting overnight. With subjects supine, blood was drawn through an intravenous catheter up to 240 min after coffee ingestion and the plasma assayed by alumina extraction followed by LCED. RESULTS: Within 15 min of drinking coffee of either type, >20 additional peaks were noted in chromatographs from the alumina eluates. Most of the coffee-related peaks corresponded to free catechols. Plasma levels of the catecholamines epinephrine and dopamine increased with both caffeinated and decaffeinated coffee. Levels of other endogenous catechols were unaffected. Plasma DHCA increased bi-phasically, in contrast with other coffee-related free catechols. INTERPRETATION: Drinking coffee-whether caffeinated or decaffeinated-results in the rapid appearance of numerous free catechols in the plasma. These might affect the disposition of circulating catecholamines. The bi-phasic increase in plasma DHCA is consistent with production by gut bacteria.


Assuntos
Cafeína/análise , Catecóis/sangue , Café/metabolismo , Adulto , Ácidos Cafeicos/sangue , Cafeína/metabolismo , Café/química , Feminino , Humanos , Masculino , Plasma/química , Estudos Prospectivos , Adulto Jovem
9.
J Pharmacol Exp Ther ; 379(3): 253-259, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34503991

RESUMO

The endogenous catecholamines dopamine (DA), norepinephrine (NE), and epinephrine (EPI) play key roles in neurobehavioral, cardiovascular, and metabolic processes; various clinical disorders; and effects of numerous drugs. Steps in intracellular catecholamine synthesis and metabolism were delineated long ago, but there remains a knowledge gap. Catecholamines are metabolized by two isoforms of monoamine oxidase (MAO), MAO-A and MAO-B, and although the anatomic localization of MAO-A and MAO-B and substrate specificities of enzyme inhibitors are well characterized, relative susceptibilities of the endogenous catecholamines to enzymatic oxidation by MAO-A and MAO-B have not been studied systematically. MAOs catalyze the conversion of catecholamines to catecholaldehydes-3,4-dihydroxyphenylacetaldehyde (DOPAL) from DA and 3,4-dihydroxyphenylglycolaldehyde (DOPEGAL) from NE and EPI. In this study we exploited the technical ability to assay DOPAL and DOPEGAL simultaneously with the substrate catecholamines to compare DA, NE, and EPI in their metabolism by MAO-A and MAO-B. For both MAO isoforms, DA was the better substrate compared to NE or EPI, which were metabolized equally. Since catecholaminergic neurons express mainly MAO-A, the finding that MAO-A is more efficient than MAO-B in metabolizing endogenous catecholamines reinforces the view that the predominant route of intraneuronal enzymatic oxidation of catecholamines is via MAO-A. The results have implications for clinical neurochemistry, experimental therapeutics, and computational models of catecholaminergic neurodegeneration. For instance, the greater susceptibility of DA than the other catecholamines to both MAO isoforms can help explain relatively high concentrations of the deaminated DA metabolite 3,4-dihydroxyphenylacetic acid than of the NE metabolite 3,4-dihydroxyphenylglycol in human plasma and urine. SIGNIFICANCE STATEMENT: Endogenous catecholamines are metabolized by monoamine oxidase (MAO)-A and -B, yielding the catecholaldehydes 3,4-dihydroxyphenylacetaldehyde (DOPAL) from dopamine (DA) and 3,4-dihydroxyphenylglycolaldehyde (DOPEGAL) from norepinephrine (NE) and epinephrine (EPI). Based on measurements of DOPAL and DOPEGAL production, DA is a better substrate than NE or EPI for both MAO isoforms, and MAO-A is more efficient than MAO-B in metabolizing DA, NE, and EPI. MAO-A is the main route of intraneuronal metabolism of endogenous catecholamines.


Assuntos
Catecolaminas/metabolismo , Inibidores da Monoaminoxidase/metabolismo , Monoaminoxidase/metabolismo , Dopamina/metabolismo , Epinefrina/metabolismo , Norepinefrina/metabolismo
10.
J Neurochem ; 158(2): 554-568, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33894018

RESUMO

The synucleinopathies Parkinson's disease (PD), multiple system atrophy (MSA), and pure autonomic failure (PAF) are characterized by intra-cytoplasmic deposition of the protein alpha-synuclein and by catecholamine depletion. PAF, which manifests with neurogenic orthostatic hypotension (nOH) and no motor signs of central neurodegeneration, can evolve into PD+nOH. The cerebrospinal fluid (CSF) levels of catecholamine metabolites may indicate central catecholamine deficiency in these synucleinopathies, but the literature is inconsistent and incomplete. In this retrospective cohort study we reviewed data about CSF catecholamines, the dopamine metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the norepinephrine metabolites 3,4-dihydroxyphenylglycol (DHPG) and 3-methoxy-4-hydroxyphenylglycol (MHPG). The compounds were measured in 36 patients with PD, 37 patients with MSA, and 19 patients with PAF and in 38 controls. Compared to the control group, the PD, MSA, and PAF groups had decreased CSF MHPG (p < .0001 each by Dunnett's post hoc test), DHPG (p = .004; p < .0001; p < .0001) and norepinephrine (p = .017; p = .0003; p = .044). CSF HVA and DOPAC were decreased in PD (p < .0001 each) and MSA (p < .0001 each) but not in PAF. The three synucleinopathies therefore have in common in vivo evidence of central noradrenergic deficiency but differ in the extents of central dopaminergic deficiency-prominent in PD and MSA, less apparent in PAF. Data from putamen 18 F-DOPA and cardiac 18 F-dopamine neuroimaging in the same patients, post-mortem tissue catecholamines in largely separate cohorts, and review of the neuropathology literature fit with these distinctions. The results suggest a 'norepinephrine first' ascending pathogenetic sequence in synucleinopathies, with degeneration of pontine locus ceruleus noradrenergic neurons preceding the loss of midbrain substantia nigra dopaminergic neurons.


Assuntos
Dopamina/líquido cefalorraquidiano , Norepinefrina/líquido cefalorraquidiano , Sinucleinopatias/líquido cefalorraquidiano , Ácido 3,4-Di-Hidroxifenilacético/líquido cefalorraquidiano , Idoso , Estudos de Coortes , Neurônios Dopaminérgicos/patologia , Feminino , Ácido Homovanílico/líquido cefalorraquidiano , Humanos , Masculino , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/líquido cefalorraquidiano , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/líquido cefalorraquidiano , Atrofia de Múltiplos Sistemas/patologia , Neurônios/patologia , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/patologia , Insuficiência Autonômica Pura/líquido cefalorraquidiano , Insuficiência Autonômica Pura/patologia , Estudos Retrospectivos , Sinucleinopatias/patologia
11.
Hypertension ; 73(4): 910-918, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30798661

RESUMO

Lewy body diseases involve neurogenic orthostatic hypotension (nOH), cardiac noradrenergic deficiency, and deposition of the protein AS (alpha-synuclein) in sympathetic ganglion tissue. Mechanisms linking these abnormalities are poorly understood. One link may be AS deposition within sympathetic neurons. We validated methodology to quantify AS colocalization with TH (tyrosine hydroxylase), a marker of sympathetic noradrenergic innervation, and assessed associations of AS/TH colocalization with myocardial norepinephrine content and cardiac sympathetic neuroimaging data in nOH. Postmortem sympathetic ganglionic AS/TH colocalization indices and myocardial norepinephrine contents were measured in 4 Lewy body and 3 rare non-Lewy body nOH patients. Sixteen Lewy body and 11 non-Lewy body nOH patients underwent in vivo skin biopsies and thoracic 18F-dopamine positron emission tomographic scanning, with cutaneous colocalization indices expressed versus cardiac 18F-dopamine-derived radioactivity. Ganglionic AS/TH colocalization indices were higher and myocardial norepinephrine lower in Lewy body than non-Lewy body nOH ( P=0.0020, P=0.014). The Lewy body nOH group had higher AS/TH colocalization indices in skin biopsies and lower myocardial 18F-dopamine-derived radioactivity than did the non-Lewy body nOH group ( P<0.0001 each). All Lewy body nOH patients had colocalization indices >1.5 in skin biopsies and 18F-dopamine-derived radioactivity <6000 nCi-kg/cc-mCi, a combination not seen in non-Lewy body nOH patients ( P<0.0001). In Lewy body nOH, AS deposition in sympathetic noradrenergic nerves is related to postmortem neurochemical and in vivo neuroimaging evidence of myocardial noradrenergic deficiency. These associations raise the possibility that intraneuronal AS deposition plays a pathophysiological role in the myocardial sympathetic neurodegeneration attending Lewy body nOH.


Assuntos
Neurônios Adrenérgicos/metabolismo , Hipotensão Ortostática/metabolismo , Corpos de Lewy/metabolismo , Miocárdio/metabolismo , alfa-Sinucleína/metabolismo , Neurônios Adrenérgicos/patologia , Idoso , Idoso de 80 Anos ou mais , Biópsia , Feminino , Humanos , Hipotensão Ortostática/diagnóstico , Hipotensão Ortostática/fisiopatologia , Corpos de Lewy/patologia , Masculino , Pessoa de Meia-Idade , Miocárdio/patologia , Tomografia por Emissão de Pósitrons , Pele/metabolismo , Pele/patologia
12.
Clin Auton Res ; 29(1): 113-117, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30229336

RESUMO

BACKGROUND: The pressor effect of L-threo-3,4-dihydroxyphenylserine (L-DOPS, droxidopa, Northera™) results from conversion of L-DOPS to norepinephrine (NE) in cells expressing L-aromatic-amino-acid decarboxylase (LAAAD). After L-DOPS administration the increase in systemic plasma NE is too small to explain the increase in blood pressure. Renal proximal tubular cells abundantly express LAAAD. Since NE generated locally in the kidneys could contribute to the pressor effect of L-DOPS, in this study we assessed renal conversion of L-DOPS to NE. METHODS: Ten patients who were taking L-DOPS for symptomatic orthostatic hypotension had blood and urine sampled about 2 h after the last L-DOPS dose. L-DOPS and NE were assayed by alumina extraction followed by liquid chromatography with electrochemical detection. Data were compared in patients off vs. on levodopa/carbidopa. RESULTS: In patients off levodopa/carbidopa the ratio of NE/L-DOPS in urine averaged 63 times that in plasma (p = 0.0009 by t test applied to log-transformed data). In marked contrast, in the three patients on levodopa/carbidopa the ratio of NE/L-DOPS in urine did not differ from that in plasma. CONCLUSION: There is extensive renal production of NE from L-DOPS. Carbidopa seems to attenuate the conversion of L-DOPS to NE in the kidneys. Further research is needed to assess whether the proposed paracrine effect of L-DOPS in the kidneys contributes to the systemic pressor response.


Assuntos
Antiparkinsonianos/urina , Droxidopa/urina , Hipotensão Ortostática/tratamento farmacológico , Hipotensão Ortostática/urina , Rim/metabolismo , Norepinefrina/urina , Adulto , Idoso , Antiparkinsonianos/farmacologia , Antiparkinsonianos/uso terapêutico , Carbidopa/farmacologia , Carbidopa/uso terapêutico , Carbidopa/urina , Droxidopa/farmacologia , Droxidopa/uso terapêutico , Combinação de Medicamentos , Feminino , Humanos , Rim/efeitos dos fármacos , Levodopa/farmacologia , Levodopa/uso terapêutico , Levodopa/urina , Masculino , Pessoa de Meia-Idade
13.
J Pharmacol Exp Ther ; 366(1): 113-124, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29700232

RESUMO

The catecholaldehyde hypothesis posits that 3,4-dihydroxyphenylacetaldehyde (DOPAL), an obligate intermediary metabolite of dopamine, is an autotoxin that challenges neuronal homeostasis in catecholaminergic neurons. DOPAL toxicity may involve protein modifications, such as oligomerization of α-synuclein (AS). Potential interactions between DOPAL and other proteins related to catecholaminergic neurodegeneration, however, have not been systemically explored. This study examined DOPAL-induced protein-quinone adduct formation ("quinonization") and protein oligomerization, ubiquitination, and aggregation in cultured MO3.13 human oligodendrocytes and PC12 rat pheochromocytoma cells and in test tube experiments. Using near-infrared fluorescence spectroscopy, we detected spontaneous DOPAL oxidation to DOPAL-quinone, DOPAL-induced quinonization of intracellular proteins in both cell lines, and DOPAL-induced quinonization of several proteins related to catecholaminergic neurodegeneration, including AS, the type 2 vesicular monoamine transporter, glucocerebrosidase, ubiquitin, and l-aromatic-amino-acid decarboxylase (LAAAD). DOPAL also oligomerized AS, ubiquitin, and LAAAD; inactivated LAAAD (IC50 54 µM); evoked substantial intracellular protein ubiquitination; and aggregated intracellular AS. Remarkably, N-acetylcysteine, which decreases DOPAL-quinone formation, attenuated or prevented all of these protein modifications and functional changes. The results fit with the proposal that treatments based on decreasing the formation and oxidation of DOPAL may slow or prevent catecholaminergic neurodegeneration.


Assuntos
Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Acetilcisteína/farmacologia , Proteínas/química , Proteínas/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/farmacologia , Animais , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Oxirredução/efeitos dos fármacos , Células PC12 , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Quinonas/metabolismo , Ratos
14.
Clin Auton Res ; 28(2): 223-230, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29396794

RESUMO

OBJECTIVE: Lewy body forms of primary chronic autonomic failure (CAF) such as incidental Lewy body disease (ILBD), Parkinson's disease (PD), and pure autonomic failure evolving into dementia with Lewy bodies (PAF+DLB) feature cardiac sympathetic denervation, whereas multiple system atrophy (MSA) in most cases does not. What links Lewy bodies with cardiac sympathetic denervation in CAF? In familial PD, abnormalities of the alpha-synuclein (AS) gene cause CAF and cardiac sympathetic denervation; and in sporadic PD, brainstem Lewy bodies contain AS co-localized with tyrosine hydroxylase (TH), a marker of catecholaminergic neurons. Cytotoxicity from AS deposition within sympathetic neurons might explain noradrenergic denervation in Lewy body forms of CAF. We used immunofluorescence microscopy (IM) to explore this possibility in sympathetic ganglia obtained at autopsy from CAF patients. METHODS: Immunoreactive AS and TH were imaged in sympathetic ganglion tissue from 6 control subjects (2 with ILBD), 5 PD patients (1 with concurrent PSP), and 3 patients with CAF (2 PAF + DLB, 1 MSA). RESULTS: MSA involved normal ganglionic TH and no AS deposition. In ILBD TH was variably decreased, and TH and AS were co-localized in Lewy bodies. In PD TH was substantially decreased, and TH and AS were co-localized in Lewy bodies. In PAF + DLB TH was virtually absent, but AS was present in Lewy bodies. The PD + PSP patient had AS co-localized with tau but not TH. CONCLUSIONS: Sympathetic denervation and intraneuronal AS deposition are correlated across CAF syndromes, consistent with a pathogenic contribution of synucleinopathy to cardiac noradrenergic deficiency in Lewy body diseases.


Assuntos
Gânglios Simpáticos/metabolismo , Doença por Corpos de Lewy/metabolismo , Doença de Parkinson/metabolismo , Insuficiência Autonômica Pura/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/metabolismo , Doença Crônica , Gânglios Simpáticos/química , Gânglios Simpáticos/patologia , Humanos , Doença por Corpos de Lewy/patologia , Doença de Parkinson/patologia , Insuficiência Autonômica Pura/patologia , Tirosina 3-Mono-Oxigenase/análise , alfa-Sinucleína/análise
15.
Brain Res ; 1679: 155-170, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29217155

RESUMO

In this study, we analyze the neuropathological and biochemical alterations involved in the pathogenesis of a neurodegenerative/movement disorder during different developmental stages in juvenile rats with a mutant Myosin5a (Myo5a). In mutant rats, a spontaneous autosomal recessive mutation characterized by the absence of Myo5a protein expression in the brain is associated with a syndrome of locomotor dysfunction, altered coat color, and neuroendocrine abnormalities. Myo5a encodes a myosin motor protein required for transport and proper distribution of subcellular organelles in somatodendritic processes in neurons. Here we report marked hyperphosphorylation of alpha-synuclein and tau, as well as region-specific buildup of the autotoxic dopamine metabolite, 3,4-dihydroxyphenyl-acetaldehyde (DOPAL), related to decreased aldehyde dehydrogenases activity and neurodegeneration in mutant rats. Alpha-synuclein accumulation in mitochondria of dopaminergic neurons is associated with impaired enzymatic respiratory complex I and IV activity. The behavioral and biochemical lesions progress after 15 days postnatal, and by 30-40 days the animals must be euthanized because of neurological impairment. Based on the obtained results, we propose a pleiotropic pathogenesis that links the Myo5a gene mutation to deficient neuronal development and progressive neurodegeneration. This potential model of a neurodevelopmental disorder with neurodegeneration and motor deficits may provide further insight into molecular motors and their associated proteins responsible for altered neurogenesis and neuronal disease pathogenesis.


Assuntos
Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Transtornos Heredodegenerativos do Sistema Nervoso , Mutação/genética , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Proteínas tau/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Sistema Nervoso Central/ultraestrutura , Modelos Animais de Doenças , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Microscopia Eletrônica de Transmissão , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Fosforilação/genética , Ratos , Ratos Mutantes , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/ultraestrutura , Proteínas tau/genética , Proteínas tau/ultraestrutura
16.
Neurochem Res ; 42(11): 3289-3295, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28840582

RESUMO

The catecholaldehyde hypothesis for the pathogenesis of Parkinson's disease proposes that the deaminated dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) is toxic to nigrostriatal dopaminergic neurons. Inhibiting monoamine oxidase (MAO) should therefore slow the disease progression; however, MAO inhibition increases spontaneous oxidation of dopamine, as indicated by increased 5-S-cysteinyl-dopamine (Cys-DA) levels, and the oxidation products may also be toxic. This study examined whether N-acetylcysteine (NAC), a precursor of the anti-oxidant glutathione, attenuates the increase in Cys-DA production during MAO inhibition. Rat pheochromocytoma PC12 cells were incubated with NAC, the MAO-B inhibitor selegiline, or both. Selegiline decreased DOPAL and increased Cys-DA levels (p < 0.0001 each). Co-incubation of NAC at pharmacologically relevant concentrations (1-10 µM) with selegiline (1 µM) attenuated or prevented the Cys-DA response to selegiline, without interfering with the selegiline-induced decrease in DOPAL production or inhibiting tyrosine hydroxylation. NAC therefore mitigates the increase in spontaneous oxidation of dopamine during MAO inhibition.


Assuntos
Acetilcisteína/farmacologia , Dopamina/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Selegilina/farmacologia , Animais , Relação Dose-Resposta a Droga , Oxirredução/efeitos dos fármacos , Células PC12 , Ratos
19.
Clin Auton Res ; 27(2): 97-101, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28188385

RESUMO

Pure autonomic failure is a rare form of chronic autonomic failure manifesting with neurogenic orthostatic hypotension and evidence of sympathetic noradrenergic denervation unaccompanied by signs of central neurodegeneration. It has been proposed that pure autonomic failure is a Lewy body disease characterized by intra-neuronal deposition of the protein alpha-synuclein in Lewy bodies and neurites. A middle-aged man with previously diagnosed pure autonomic failure experienced a sudden, fatal cardiac arrest. He was autopsied, and tissues were harvested for neurochemical and immunofluorescence studies. Post-mortem microscopic neuropathology showed no Lewy bodies, Lewy neurites, or alpha-synuclein deposition by immunohistochemistry anywhere in the brain. The patient had markedly decreased immunofluorescent tyrosine hydroxylase in sympathetic ganglion tissue without detectable alpha-synuclein even in rare residual nests of tyrosine hydroxylase-containing ganglionic fibers. In pure autonomic failure, sympathetic noradrenergic denervation can occur without concurrent Lewy bodies or alpha-synuclein deposition in the brain or sympathetic ganglion tissue.


Assuntos
Insuficiência Autonômica Pura/sangue , Insuficiência Autonômica Pura/diagnóstico por imagem , Manobra de Valsalva/fisiologia , alfa-Sinucleína/sangue , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência Autonômica Pura/fisiopatologia
20.
Parkinsonism Relat Disord ; 35: 88-91, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28034624

RESUMO

BACKGROUND: Severe putamen dopamine depletion characterizes Parkinson's disease (PD) and multiple system atrophy (MSA). The extent of the depletion is greater than can be accounted for by loss of nigrostriatal dopaminergic terminals alone. We used putamen tissue levels and ratios of cysteinyl and parent catechols to explore possible denervation-independent abnormalities of dopamine synthesis and fate in PD and MSA. 5-S-Cysteinyldopa (Cys-DOPA) is produced from spontaneous oxidation of DOPA and 5-S-cysteinyldopamine (Cys-DA) from spontaneous oxidation of DA. METHODS: Post-mortem putamen tissue samples from 17 PD and 25 MSA patients and 30 controls were assayed for endogenous catechols including DA, its cytoplasmic metabolites (Cys-DA, 3,4-dihydroxyphenylacetic acid, 3,4-dihydroxyphenylethanol, and 3,4-dihydroxyphenylacetaldehyde), and tyrosine hydroxylation products proximal to DA (DOPA and Cys-DOPA). RESULTS: The PD and MSA groups did not differ in mean values of parent or cysteinyl catechols, and the data for the two groups were lumped. In the patients an index of vesicular storage of DA (the ratio of DA to the sum of its cytoplasmic metabolites) averaged 54% of control (p = 0.001), and an index of L-aromatic-amino-acid decarboxylase (LAAAD) activity (the ratio of DA and the sum of its cytoplasmic metabolites to the sum of DOPA + Cys-DOPA) averaged 21% of control (p < 0.0001). An index of innervation (the sum of DOPA + Cys-DOPA) averaged 63% of control (p = 0.01). INTERPRETATION: Based on patterns of parent and cysteinyl catechols in putamen, PD and MSA involve decreased vesicular uptake and decreased LAAAD activity in the residual dopaminergic terminals. The combination seems to contribute importantly to dopamine depletion in these diseases.


Assuntos
Dopamina/metabolismo , Atrofia de Múltiplos Sistemas/metabolismo , Doença de Parkinson/metabolismo , Putamen/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Denervação/tendências , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/patologia , Doença de Parkinson/patologia , Putamen/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...